根据次序,制定运营的发力点,再遵循用户的购买路径制定转化路径。
在用户分布相对稳定的前提下,应顺从用户的购买规律而非倾力于另一条主线。
一专多强的前提是专,只有聚焦优势品类或主题建立了优势,才能为其他的方向供应炮弹。
4)增长观察
前面解决的问题是:他是谁,买什么以及怎么买。最后一点,则是增长观察。
购买路径聚焦于次序,增长观察聚焦于深度。购买的次序是运营的主线,购买的深度用于精细化运营。
了解用户在品类和对象的购买深度,再辅以ARPU与LTV的比对,从用户的剩余潜力寻找平台增长点的方式。
2-2、建立你的用户模型
了解用户的下一步,是建立用户模型。
在一次交流会上,前辈阿翘对我提问:“你所负责的产品,用户画像是怎么样的?”
当时我把平台用户的地域、年龄、性别等分布介绍了一番。紧接着他提问:“根据这样的画像你能够做什么呢?”
再后来,我才学会了把数据聚合成特征,把特征集合成模型。
基于对用户的认识建立模型,以上一小节的决策模型为例。
将决策类型、品类偏好、对象偏好、促销偏好4个因子的关联,并辅以用户的基础信息进行组合。
如:“精打细算、专注大牌、疼爱孩子的母亲”。
这样一来冰冷的数据也被赋予了情感化的表达,无论是产品设计、交互设计、产品运营都会变得容易的多。
建立起用户模型,才能够更好地进行情感化设计、精细化运营。
2-3、分析与收益相关的行为
收益,常用成交或ROI进行衡量。那我们怎么判断与收益相关的行为呢?有关程度又有多高?
判断相关性及其程度时,使用的方法是:相关性分析。
相关性分析主要用于:
a、判断两个或多个变量之间的统计学关联;
b、如果存在关联,进一步分析关联强度和方向。
根据数据的类型不同,所采取分析方法不同。
关于收益及影响收益的行为,二者都属于无序分类变量,此类数据的分析方法是卡方校验。
卡方检验,用于统计样本的实际观测值与理论推断值之间的偏离程度,如果卡方值越大,实际观测值与理论推断值偏差程度越大。
反之,二者偏差越小;若两个值完全相等时,卡方值就为0,表明理论值完全符合。
在实际分析时,会先进行假设,并通过计算判定其假设成立的概率从而反推其不成立的概率。
以判定关注与成交行为是否有关为例,介绍卡方校验。
1)提出假设
假设:关注与成交无关
2)计算实际观测数据及理论推测数据
将关注及成交的相关数据进行统计,可得出下表:
根据表格,可计算出综合的成交率等于58.3%。
假设关注与成交行为无关,成交率应不随关注行为变化而变化,或数据抖动较小。
将观测的成交率代入原表,并得出理论推断值。
完成了这一步,就可以进行卡方检验的计算了。
3)卡方校验计算
继续代入公式
当我们计算出卡方值时,可以初步判定由于卡方值较大,实际观测值与理论推断值差异较为明显,原假设关注与成交无关成立的可能性是比较小的。
4)计算自由度及P值
而到了判定可能性具体的程度,则是根据P值(用于判断判定假设检验结果)进行校验,P值越小,原假设关注与成交无关的概率也越小。
由于其自由度等于1,结合卡方值再查询卡方分布表可得P<0.01,所以原假设成立的可能也越小,即关注与成交有关的概率非常大。
在实际使用时,同样的也须兼顾样本和观测时间周期,样本包含准确性和数量,观测时间周期则用于分辨其抖动性。这2者较为基础也就不过多描述了。
相关性分析,用于代表相关程度,只能说明有关但并不能说明因果性。
对变量之间的依赖关系进行定量关系及因果关系的研究,我们还会使用回归分析进行计算。但由于计算方式并非本文的重心,在此也不过多的赘述了。
本小节,也有较多的概念并未在本文提及,此部分将附在文末。
小结
个人认为数学方法是非常重要的领域知识,很多时候不是不会数据分析,而是不知道使用什么方法分析。因为不曾见过,所以也未曾往陌生的方向思考。
遇到这样的问题时,先运用逆向思维确认分析目标,其次再进行结构化的拆解,再逐层学习分析时应该使用的方法。
若时间宽裕,还是建议阅读统计学相关的书籍。耐下性子阅读,工具书的收益会比大部分同领域的文章都大。
写在最后
这篇文章写完,前后花了大半年时间的《产品经理的能力模型》专题也就结束了。
开设公众号的初衷是因为0-2岁的产品经理受到的毒害太多了,想写一些比较朴实的文章。其次也想借着写作提炼自己的知识,沉淀自己的方法论。
下一个阶段,公众号将更垂直于产品运营。也由于今年的重心是学习,本就不快的发文频率可能会再次减缓,也请多多担待。
以上就是本篇文章【数据分析应学习逻辑思维及分析方法】的全部内容了,欢迎阅览 ! 文章地址:http://sjzytwl.xhstdz.com/news/10610.html
栏目首页
相关文章
动态
同类文章
热门文章
网站地图
返回首页 物流园资讯移动站 http://sjzytwl.xhstdz.com/mobile/ , 查看更多