相关文章
GEM5 Garnet Standalone packet injection pattern garnet包的生成路径:packet message flit
2025-01-01 04:37

/ 在不同的消息类别上对不同的一致性消息类型进行建模。
//
// GarnetSyntheticTraffic 采用 Garnet_standalone 一致性协议
// 它对三个消息类/虚拟网络进行建模。
// 它们是:请求、转发、响应。
// 请求和转发是“控制”数据包(通常为 8 字节
// 而响应是“数据”包(通常为 72 字节)。
//
// 数据包从测试仪进入网络的生命周期
// (1) 该函数generatePkt()生成其中之一的数据包
// 以下 3 种类型(随机:ReadReq、INST_FETCH、WriteReq
// (2) mem/ruby/system/RubyPort.cc 将它们转换为 RubyRequestType_LD,
// 分别为 RubyRequestType_IFETCH、RubyRequestType_ST
// (3) mem/ruby/system/Sequencer.cc 将这些发送到缓存控制器
// 在一致性协议中。
// (4) Network_test-cache.sm 标签 RubyRequestType:LD,
// RubyRequestType: IFETCH 和 RubyRequestType: ST as
// 分别为请求、转发和响应事件
// 并将它们分别注入到虚拟网络0、1和2中。
// 它立即回调定序器。
// (5) 数据包遍历网络(simple/garnet)并到达其
// 目的地(目录)和网络统计信息已更新。
// (6) Network_test-dir.sm 只是丢弃数据包。

先启动docker,然后cd 进gem5文件夹

 

按照官网,编译 garnet standaalone.

 

使用的命令行实例

 
 

这个config python文件,cpu类型是 GarnetSyntheticTraffic:

 

src/cpu/testers/garnet_synthetic_traffic/GarnetSyntheticTraffic.py 下,pybind了cpp的代码

 

garnet_synth_traffic.py中的 一大串例如 num_packets_max=args.num_packets_max, 会作为 const Params &p传递给cpp,而src/cpu/testers/garnet_synthetic_traffic/GarnetSyntheticTraffic.cc中,创建时就对成员变量初始化:

 

在 C++ 中,冒号 ( : )在构造函数中用于初始化成员变量和基类。这种语法称为初始化列表。初始化列表紧跟在构造函数声明的后面,并在函数体执行之前初始化类的成员。提供的代码中,GarnetSyntheticTraffic 类的构造函数使用初始化列表来初始化其成员变量和基类。

代码示例解释

ClockedObject§:这是对基类 ClockedObject 的构造函数的调用。它使用参数 p(一个 Params 结构体)来初始化基类部分的 GarnetSyntheticTraffic 对象。

后续的每一行(例如,tickEvent([this]{ tick(); }, “GarnetSyntheticTraffic tick”, false, Event::CPU_Tick_Pri))都是成员变量的初始化。每个成员变量都使用特定的值或表达式进行初始化。例如

tickEvent 成员使用一个 lambda 函数、一个字符串和两个布尔值进行初始化。
cachePort 使用字符串和 this 指针(指向当前对象)进行初始化。
numPacketsMax是一个int值,具体的数字初始化为p.num_packets_max.
最后一个成员变量 requestorId 是使用 p.system->getRequestorId(this) 的返回值进行初始化。

命令行有一些args 例如–injectionrate=0.01,还有 --synthetic=uniform_random ,传递给ruby createsystem.
Ruby.create_system(args, False, system)

比如 uniform_random,会(通过某种方式,目前还没解读到)传递到 src/cpu/testers/garnet_synthetic_traffic/GarnetSyntheticTraffic.cc中,
GarnetSyntheticTraffic.cc中的代码:
else if (traffic == UNIFORM_RANDOM_) {
destination = random_mt.random(0, num_destinations - 1);
.
void
GarnetSyntheticTraffic::generatePkt() 根据vnet不同,创建不同的 req .

req打包变成 PacketPtr pkt = new Packet(req, requestType);

sendPkt(pkt); 发送出去.

 
 

!cachePort.sendTimingReq(pkt) 用了 sendTimingReq.

这个函数细节在 src/mem/port.hh里:

 

s这里的 rc/mem/port.hh中的RequestPort::sendTimingReq 使用的 _responsePort传递进 TimingRequestProtocol::sendReq函数里,作为 *peer.
这里,从port.hh的 sendTimingReq,到下一步我们要看到 src/mem/protocol/timing.cc 中的 sendReq.

src/mem/protocol/timing.cc里, sendReq 被使用了,而 sendReq内部,则是使用了 peer->recvTimingReq(pkt).

 

这里TimingRequestProtocol的peer是 src/mem/protocol/timing.hh中 class TimingResponseProtocol类 , 这个类的官方注释里写了,

 
 

src/mem/ruby/system/RubyPort.cc 中会用一个 makeRequest

 
 

src/mem/ruby/system/Sequencer.cc 中 ,Sequencer 会有一个 issueRequest 的操作

 
 

``cpp
//创建一个ruby request
std::shared_ptr msg;
msg = pkt.各种操作//将pkt变成ruby request
m_mandatory_q_ptr->enqueue(msg, clockEdge(), latency);//插入 m_mandatory_q_ptr-

 

到这里,一个pkt 就变成msg,存进message buffer,然后变成了flits,进入了noc 网络.

其他的相近代码 没删,只是为了备用

我们点击vccode中的gotodefination
src/systemc/tlm_bridge/gem5_to_tlm.hh

 

或者
util/tlm/src/sc_slave_port.cc

 
 

src/mem/port.cc有bind的函数.

 
 

src/mem/tport.cc 有一串代码,本质是 schedTimingResp.

 
 

src/mem/bridge.hh

 
 

GarnetSyntheticTraffic 会打包好packet,一个requst packet准备好了后, GarnetSyntheticTraffic::sendPkt 会调用 cachePort.sendTimingReq(pkt). 这个port.sendTimingReq会调用port内部函数 TimingRequestProtocol::sendReq函数.
TimingRequestProtocol::sendReq 里会把传入的pkt 和_responsePort 一起读进来,调用 _responsePort的函数recvTimingReq,也就是这里执行的 peer->recvTimingReq(pkt),其实是 _responsePort->recvTimingReq(pkt).
这个 _responsePort每次都是会变的,取决于何时bind.

而这里,request发出的包是直接相连,或者说 "虚空连接"到response的,并没有经过network. 这里用的函数也都是port.hh或者tport.hh.

还是从 void
GarnetSyntheticTraffic::sendPkt(PacketPtr pkt) 中使用的 cachePort.sendTimingReq(pkt)开始.
只不过,这次的 cachePort 是 RubyPort了.

发req还是用protocol里的 TimingRequestProtocol::sendReq.

之前我们看的是 src/mem/tport.cc 里的
SimpleTimingPort::recvTimingReq(PacketPtr pkt)

rubyport里则有两种

 

    以上就是本篇文章【GEM5 Garnet Standalone packet injection pattern garnet包的生成路径:packet message flit】的全部内容了,欢迎阅览 ! 文章地址:http://sjzytwl.xhstdz.com/news/12765.html 
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 物流园资讯移动站 http://sjzytwl.xhstdz.com/mobile/ , 查看更多   
最新文章
3防手机(3防手机8849)
  关于《三防手机》的文章  随着科技的不断发展,智能手机已经成为我们日常生活中不可或缺的一部分。然而,我们的手机在使用
华为手机有放大镜望远镜的功能吗 华为手机放大镜望远镜功能介绍【详解】手机望远镜「华为手机有放大镜望远镜的功能吗 华为手机放大镜望远镜功能介绍【详解】」
  有放大镜望远镜的功能吗,很多朋友都遇到了这样的问题。这个问题该如何解决呢?下面小编就带来华为放大镜望远镜的功能介绍,
4glte是什么手机(4g lte+)
  关于《4GLTE是什么手机》的文章  在现代社会,移动通信技术日新月异,其中,4GLTE技术已成为众多智能手机所广泛采用的一种
工行短信银行工商银行手机银行app下载「工行短信银行」
工行短信银行app是一款工行移动金融创新产品的手机客户端。工行短信银行客户端为你提供实时查询、业务办理等等,方便快捷,快来I
怎么办理手机银行手机银行「怎么办理手机银行」
随着移动互联网的飞速发展,手机银行已成为我们日常生活中不可或缺的一部分,它提供了便捷、高效的金融服务。那么,如何办理手机
手机管家手机管家「手机管家」
手机管家是一款综合性的手机管理软件,旨在为用户提供一站式的手机优化服务。通过智能清理、加速、安全保护等功能,帮助用户轻松
品牌手机排行榜前十名手机品牌排行榜前十名「品牌手机排行榜前十名」
华为创立于1987年,是全球领先的信息与通信技术(ICT)解决方案供应商,在电信运营商、企业、终端和云计算等领域构筑了端到端的解
手机CPU天梯图2023年2月最新版,你的手机排名如何?手机cpu天梯图「手机CPU天梯图2023年2月最新版,你的手机排名如何?」
2月已经过去,我们迎来了3月,冬日的寒冷逐渐消散,春天的日子已经触手可及。今天是我们3月份的第一天,芝麻科技讯更新了2023年2
6g运行手机(6g运行手机什么牌子好)
  关于《6G运行手机》的文章  随着科技的飞速发展,手机已经成为了我们日常生活中不可或缺的一部分。近日,各大手机品牌纷纷
手机控必看!大屏手机用出“手机手” 严重的要动手术手机手「手机控必看!大屏手机用出“手机手” 严重的要动手术」
你的手还好吗?鼠标手、键盘手、近视眼、肩周炎……难道这些伤害还不够吗?这不,最近又爆出新科技病——“手机手”!没有买卖,
相关文章