推广 热搜: 行业  设备    系统  参数  经纪    教师  机械  中国 

5G时代热管理需求强劲,VC均热板与热管好在哪?5g智能手机「5G时代热管理需求强劲,VC均热板与热管好在哪?」

   日期:2025-01-12     作者:caijiyuan    caijiyuan   评论:0    移动:http://sjzytwl.xhstdz.com/mobile/news/13642.html
核心提示:一代通信技术,一代手机形态,一代热管理方案。通信技术的演进,会持续引发移动互联网应用场景的变革,并推动手机芯片和元器件性


一代通信技术,一代手机形态,一代热管理方案。通信技术的演进,会持续引发移动互联网应用场景的变革,并推动手机芯片和元器件性能快速提升。但与此同时,电子器件发热量迅速增加,对手机可靠性和移动互联网发展带来了严峻挑战。从4G时代进入5G时代,智能手机芯片性能、数据传输速率、射频模组等都有着巨大提升,无线充电、NFC等功能逐渐成为标配,手机散热压力持续增长。由于在散热效率方面极具优势,均热板(VC)逐渐成为5G手机散热的主流方案,并加速向超薄化、结构简单化和低成本方向发展,技术迭代正在加速进行。未来随着5G终端产品进一步放量,VC均热板市场增长潜力巨大。


1、5G时代高功率、高集成、高热量趋势明显,热管理成为智能手机“硬需求”



2020年,5G技术迈向全面普及,消费电子产品向高功率、高集成、轻薄化和智能化方向加速发展。由于集成度、功率密度和组装密度等指标持续上升,5G时代电子器件在性能不断提升的同时,工作功耗和发热量急遽升高。据统计,电子器件因热集中引起的材料失效占总失效率的65-80%。为避免过热带来的器件失效,导热硅脂、导热凝胶、石墨导热片、热管和均热板(VC)等技术相继出现、持续演进,散热管理已经成为5G时代电子器件的“硬需求”。

1.jpg
数据来源:埃米空间

(一)智能手机功耗持续提升,散热需求水涨船高

4G时代,智能手机数据传输速度和处理能力相比2G、3G时代有显著提升,AR、高清视频、直播等应用场景加速落地,人们对手机性能的要求越来越高,推动手机硬件配置快速迭代。但与此同时,智能手机发热的问题也越来越严重,手机发烫、卡顿和死机时有发生,严重时甚至会导致主板烧坏乃至爆炸。
2.jpg
数据来源:Yole Development,EUCNC

根据EUCNC数据,LTE智能手机功耗主要来源于功率放大器、应用处理器、屏幕和背光、信号收发器和基带处理器。随着消费电子产品向高集成、轻薄化和智能化方向发展,芯片和元器件体积不断缩小,功率密度却在快速增加,智能手机的散热需求成为亟需解决的问题:

(1)芯片性能更高,四核、八核成为主流;

(2)柔性显示、全面屏逐渐普及,2K/4K屏占领高端市场;

(3)内置更多无线功能,例如NFC、GPS、蓝牙和无线充电;

(4)机身越来越薄,封装密度越来越高。

3.jpg
表1 手机主要热量来源

随着5G技术逐渐走向成熟,智能手机对散热管理的需求再次大幅提升,主要表现为以下几方面:
(1)5G手机射频前端支持的频段数量大幅增加,需采用Massive MIMO技术以增强信号接收能力,天线数量和射频器件数量远超4G手机;
(2)5G手机芯片处理能力有望达到4G手机的5倍以上,手机发热密度绝对值将是4G手机的2倍以上;
(3)5G信号穿透能力变弱,手机机身材质逐渐向陶瓷和聚合物转变,加之5G手机越来越紧凑,导致散热能力越来越弱。


(二)5G来袭发热量剧增,散热需求进一步凸显

通信制式及手机支持频率
4.jpg
数据来源:Yole Development

表2 射频前端价值对比测量
5.jpg
数据来源:中信证券研究部测算


此外,5G手机普遍采用基带外挂的方案,相关电路和电源芯片也要增加,手机内部功耗相应增加;由于5G覆盖范围不足,导致手机频繁启动5G信号搜索功能,发热量也会变大。试验证明,温度每升高2℃,电子元器件可靠性将下降10%,其在50℃环境下的寿命只有25℃的 1/6。由此可见,散热器件是5G手机中不能省掉、必不可少的环节。    



(三)散热解决方案多样,导热材料器件频频现身


一般而言,电子器件散热有主动散热(降低手机自发热量)和被动散热(加快热量向外散出)两种路线。其中,主动散热主要利用与发热体无关的动力元件强制散热,一般应用于高功率密度且体积相对较大的电子设备,如台式机和笔记本中配备的风扇、数据中心服务器的液冷散热;被动散热则主要通过导热材料和导热器件将元器件产生的热量释放到环境中,是一种没有动力元件参与的散热方式,广泛应用于手机、平板、智能手表、户外基站等。



表3 热量传递方式及相关散热解决方案
6.jpg
数据来源:埃米空间

电子器件散热过程示意图
7.jpg
数据来源:埃米空间


目前,电子器件使用的散热技术主要包括石墨散热、金属背板、边框散热、导热凝胶散热等导热材料,以及热管、VC等导热器件。其中,导热凝胶、导热硅脂、石墨片和金属片主要在中小型电子产品使用,热管和VC则主要用在笔记本、电脑、服务器等中大型电子设备中使用。


8.jpg
主要导热材料(数据来源:中石科技招股说明书)


导热系数和厚度是评估散热材料的核心指标。传统手机散热材料以石墨片和导热凝胶等热界面材料(TIM)为主,但是石墨片存在导热系数相对较低,TIM材料则存在厚度相对较大等问题。在手机厂商的推动下,石墨烯材料持续取得突破,开始切入到消费电子散热应用;热管和VC厚度不断降低,开始从电脑、服务器等领域渗透到智能手机领域。



9.jpg
不同散热材料/器件的导热效率
(数据来源:安信证券)

2、热管/均热板解决方案优势显著,超薄均热板技术迭代进一步加速


热管和均热板利用热传导与致冷介质的快速热传递性质,导热系数较金属和石墨材料有10倍以上提升,作为新兴的散热技术方案,近年来在智能手机领域开始获得广泛应用。其中,热管的导热系数范围为10000~100000 W/mK,是纯铜膜的20倍,是多层石墨膜10倍;均热板作为热管技术的升级,进一步实现了导热系数的提升。


10.jpg
TGP(Thermal Ground Plane)
扁式热管数据来源:日本FUJIKURA

(一)热管/均热板散热能力强,5G手机终端快速普及


热管一般由管壳、吸液芯和端盖构成,将管内抽成1.3×(10-1~10-2)Pa的压强后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。吸液芯采用毛细微孔材料,利用毛细吸力(由液体表面张力产生)回流液体,管内液体在吸热段吸热蒸发,冷却段冷凝回流,循环带走热量。


11.jpg
热管结构与导热机制示意图
(数据来源:TECHBRIEFS官网)


从热传递的三种方式来看(辐射、对流、传导),对流传导效率最高,因此热管技术一经诞生就迅速普及开来。1963年,美国洛斯阿拉莫斯国家实验室发明热管技术。此后,热管技术迅速应用于宇航、军工等行业。随着消费电子产业的发展,热管技术逐渐应用于桌面电脑、笔记本、LED、平板电脑和手机中。


12.jpg
热管的应用领域
(数据来源:《Frontiers in Heat and Mass Transfer》)
13.jpg
热管在不同领域的应用
(数据来源:《Frontiers in Heat and Mass Transfer》)


均热板工作原理与热管类似,同样包括传导、蒸发、对流、冷凝四个主要步骤。两者差别主要在于热传导方式不同。热管的热传导方式是一维的,是线的热传导方式,而均热板的热传导方式是二维的,是面的热传导方式。相对于热管,首先均热板与热源以及散热介质的接触面积更大,能够使表面温度更加均匀;其次使用均热板可以使热源和设备直接接触降低热阻,而热管则在热源和热管间需要嵌入基板;最后均热板更加轻薄,更能够适应手机集成化、轻量化的趋势。相关研究表明,VC散热器的性能比热管提高20%~30%。


14.jpg
VC均热板与热管的散热机制
(数据来源:安信证券)
15.jpg
不同种类的VC均热板
(数据来源:TAMPERE UNIVERSITY OF TECHNOLOGY)


随着5G手机功耗持续升高,对整机散热能力的要求不断提升,均热板/超薄均热板的应用开始激增。4G时代高端手机普遍采用热管技术来实现快速散热。进入5G时代,手机厂商开始广泛应用均热板技术,进一步提升智能手机的散热效率。


虽然热管和均热板的导热系数更高,但是原理是加快热量从手机发热部件转移到环境中的速度,最终散热效果还是要看散热材料与空气之间的热对流。因此,散热材料的热特性对手机散热效果有着不可忽视的影响。目前,“散热片(石墨烯膜/石墨片)+热管/均热板”的整体解决方案逐渐被市场所认可。



(二)均热板产品快速迭代,技术方案持续演进


均热板与热管的区别,还在于器件结构的差异。传统的两层均热板制作流程为在铜基的基础上烧结支柱和灯芯结构,然后进行铜焊、灌水并密封,最后钎焊周边,形成稳固的均热板。随着工艺技术的发展,和不同应用场景对器件大小、性能的要求,均热板制作工艺和结构不断优化升级,相关产品快速迭代。


16.jpg
VC均热板结构示意图
(数据来源:互联网)


近年来,VC均热板技术演进方向主要集中于以下几个方面:一是均热板选材多样化,受益于中框-VC一体化散热解决方案,不锈钢VC崭露头角;二是封装工艺正在变革,激光封装有望替代镀铜钎焊封装制程;三是超薄VC铜网烧结毛细制程有望被打破,毛细制程多样化,印刷毛细与半导体光罩蚀刻毛细崭露头角;四是厚度进一步下探,VC均热板有望薄至0.3mm以下。


此外,自动化正在成为VC均热板制程发展的必然趋势,注水除气、插鼠尾、置铜网等关键工序将实现高度自动化。未来几年,VC均热板生产将逐步集中于手机精密机构件供应链头部厂家,促进自动化的普及。相比之下,自动化程度高的均热板生产企业将获得竞争优势,市场竞争将进一步加剧。


17.jpg
一种超薄均热板
(数据来源:Trivision Etching Technoogy)

3、总 结


根据Yole Development预测,2019-2025年间5G手机销量将以72%的复合增长率扩张;到2025年,5G手机市场份额将占总市场份额的30%左右;届时,支持毫米波频段的5G手机将占全部5G手机的13%。尽管受疫情影响,2020年第一季度全球智能手机出货量2.758亿台,同比下降11.7%。但高通对全年5G手机出货量较为乐观,维持2020年5G手机出货预测在1.75亿至2.25亿部不变。


18.png
数据来源:Yole Development


随着5G通信技术不断走向成熟,5G手机终端开始放量,VC均热板将迎来爆发性增长。假设VC均热板在5G手机中的渗透率达到30%,单片VC均热板价值15元人民币,则2025年全球手机VC均热板市场将达到90亿元人民币以上。受此驱动,VC均热板技术迭代加速,新材料、新结构、新工艺将不断涌现,自动化程度继续提升,国际竞争日趋激烈。



比热管还高级?VC均热板真的好用吗?

01 新兴的VC均温板

热管虽然非常适合笔记本和手机这类超轻薄的移动设备,但在“瘦身风潮”肆虐的当下,无论是游戏本还是游戏手机也都以更性感的身材为荣,有限的内部空间用于很难安置更多、更长和更粗的热管。
因此,业内迫切需要一种比热管导热效率更高的散热部件。于是,名为VC(Vapor Chamber)的“均热板”(又称“均温板”)便出现了。

02 VC均热板的散热原理

作为笔记本和智能手机的新型散热方式,VC均热板同样属于相变导热的代表,也是由纯铜打造的内部密封且中空(内壁不光滑,布满毛细结构),并填充冷凝液的散热单元,只是它的形态并非热管的扁平“条状”,而是呈现出更宽的扁平“片状”。
19.png

VC均热板的内部结构


VC均热板的工作原理和热管有相似也有不同,但大体上都包含传导→蒸发→对流→凝固四个步骤。
首先,发热源(芯片)运行时产生的热量传导至VC均热板的蒸发端,内部的冷凝液会迅速吸收这些热量并转化为蒸气,从而带走大量的热能。由于水蒸气的潜热性,VC均热板的热蒸汽会由高压区扩散到低压区(冷凝端),当蒸汽接触温度较低的内壁时会迅速凝结为液体并释放热能。最后,这些液体会利用毛细作用流回蒸发端,最终形成一个水气并存的双相循环系统。
20.jpg

热管的散热原理


热管和VC均热板的差异主要表现在内部的传导方式方式上。热管受制于“条状”形态,热量(热蒸汽)只能在左右两个方向上进行线性传导。此外,在热管和发热源(芯片)之间往往还需嵌入一层散热基板,后者的材质、面积和填充物也会影响一定的导热效率。
21.jpg

VC均热板的工作原理


反观VC均热板,得益于其“片状”的形态,热量可以向多个水平方向传导,冷凝的效率更高,而且它与热源以及散热介质的接触面积更大,能够使表面温度更加均匀。由于VC均热板和能与发热源直接接触无需基板,还可进一步降低热阻。总之,更大面积的VC均热板可以更好地减少热点,实现芯片下的等温性,较之热管可以做得更薄,在水平方向上的散热性能堪称完美。因此,这种导热单元更加符合目前笔记本和智能手机轻薄化、空间利用最大化的发展趋势。

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新文章
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新文章
点击排行